SOFiSTiK vs RMBridge - a comparision

L

© SOFiSTiK AG 2016

Γ

Agenda

Г

- Who am I
- Fields of application project applications
- Technical details general
- Technical details ILM
- Examples incl Panama crossing

Г

19.10.2017 / 2

Agenda

Г

L

- Georg Pircher, M.Eng
- 1991- 1996 EPFL and project-engineer at Monod Ing. Conseils, Switzerland
- 1996 2005 Project support with RMBridge at TDV Heinz Pircher + Partner Specification of GP pre-processor
 International sales
- 2005 2012 CEO and owner of ABES, distribution partner for SOFiSTiK
- 2012 date International sales manager SOFiSTiK, share holder

 \Box

The two companies – economical view over the last 10 years

SOFiSTiK: The company

- 40 employees in 2006, 71 employees today
 of which 40+ are in R&D
- 40 international competence partners.
- FE and CAD since 1974, ongoing development, fully BIM since 2010.
 - 11mio € turnover / year
- One of 4 industry partners of Autodesk
- Releases of SOFiSTiK 2008, 10, 12, 14, 16
 and 2018 now in Aug2017.
- 90% of home market (=Central Europe).

RMBridge team at Bentley

- 24 employees in 2005, down to 8 until being <u>closed in 2016</u>
- 5 international partners, lots of Bentley resellers.
- Almost no development since 2008
- Home market dead (3 users in Austria left)
- 500k turnover / year (???)
 - 2 engineers for global support.

Г

19.10.2017 / 4

Г

SOFiSTiK: analyses and design of

• Bridges

Г

L

- Foundations
- Buildings (BIM!)
- Steel
- Light weight
- Tunnelling + Geotechnic
- Soil

19.10.2017 / 5

RMBridge: analyses and design of

• Bridges

SOFiSTiK: analyses and design of

RMBridge: analyses and design of

Г

19.10.2017/6

Г

SOFiSTiK for Bridges

- Long span bridges
- Short span bridges
- Slab and shell bridges
- Design for shells and beams
- Design of supports and foundations
- Bridge repair and rehabilitation
- Global and local design

RMBridge for Bridges

- Long span bridges
- Short span bridges not really.

Global design

Г

 \Box

19.10.2017 / 7

Г

Where RMBridge is specifically good at:

- Global design of Cable stayed bridges, ...
- Suspension bridge and ...
- Balanced cantilever bridges.
- Train-structure interaction (Rolling Stock)
- Wind dynamics

... but all can be done with SOFiSTiK as well.

Г

19.10.2017 / 8

Г

19.10.2017 / 11

Bridges RMBridge can not deal with:

19.10.2017 / 12

Г

19.10.2017 / 13

Bridges RMBridge can <u>not</u> deal with:

19.10.2017 / 15

Г

L

Bridges or Bridge topics RMBridge can <u>not</u> deal with:

Г

19.10.2017 / 16

Г

19.10.2017 / 17

Bridges or Bridge topics RMBridge can <u>not</u> deal with:

19.10.2017 / 18

Г

Bridges or Bridge topics RMBridge can <u>not</u> deal with:

19.10.2017 / 19

Г

Г

Bridges or Bridge topics RMBridge can <u>not</u> deal with:

19.10.2017 / 20

Г

Bridges or Bridge topics RMBridge can <u>not</u> deal with:

Г

19.10.2017 / 22

Г

Technical details - general

Bridge Engineering	Geometry	3D geometry based on AutoCAD, road alignment in plan and elevation.	also for interactive load definitions.	o	seperate Pre-processor, Bentley based graphics
1	Cross-sections	any shape, steel, concrete, composite, thin- and thick-walled, parametric variation.	AutoCAD based or individual pre-processor.	~	seperate Pre-processor
	Tendons	3D tendons, internal, external.	bonded / unbonded	~	only beam pt
	Loads	no limitation. For traffic - load stepping or influence lines/surface.	Automatic patch loader for some standards.	~	no influence surfaces, no load stepping, no auto-loader
	Stages	Built in Construction stage manager.	Forward, Backward.	0	only forward stages
	Superposition	All relevant combinations and envelopes.	Either using code dependent macros, or individual combinations.	o	no automatic combinations
	Design	SLS and ULS design for several codes (concrete, PT, reinf., steel), precamber.	Automatised code dependent macros, or individual checks.	~	only basic steel design
	Results/Report	Standard graphics set up, automatically set up general report, individual adjustments and comments possible.	Full Excel/Word/PDF interface.	~	report facility limited, difficult creation of graphical results and reports

19.10.2017 / 24

Г

L

Technical details - general

Erection methods	Span-by-span	Level by level, layer per layer.	In general applicable for any	~	only for bridge structures
	Incremental Launching	Temp. supports and temp. pre-stressing.	Specific pre-processor available.	o	seperate Pre-processor
	Balanced cantilevers	Pre-camber, stability, int.+ext. pre- stressing.	Creep&shinkage, relaxation, elastic shortening	o	
	Pre-cast pre- and post- tensioning	Slab + beam, concrete + concrete, steel + concrete.	Specific pre-processor available.	~	difficult modelling, only beams
Tree	Composite	All materials, any combination		o	composite as indiv. Beam elements (3 beams = one composite member)
1998	Suspension	Non-lin stages, stress-free lengths,	Form finding feature.	~	very complicated for non-lin stages
	Cable Stayed	Forward, backward calculation	Stressing force and geometry optimistation.	~	no backward calculation

19.10.2017 / 25

Г

L

Technical details - general

L					
Dynamic & Seismic Analysis	Modal analysis and time-step method	Linear/non-lin dynamics and seismic analysis & design.	Eigenvalue Solver: concurrent.	0	
A	Damping elements (linear and non-linear)	3D-shell elements.	3D-continuum elements.	x	
	Response Spectra	According to EC8, DIN 4149B 4015, SIA 160, UBC,	Indian Standard 1893, Chinesische GBJ 11.89, SNIP, AASHTO, BS5400.	~	no standard spectras available
	Damping elements (linear and non-linear)	Groups with variable damping characteristics.	Integration of the motion equation through superpositioning of the Eigenforms (even for 3D continua).	o	
	Vehicle-Structure- Integration	Moving loads, High-Speed trains.	3D-continuum elements, Time- history.	0	
	Push-over analysis	2nd order, plastic hinges, stability.	_	~	
	Non-Lin Wind analysis	Wind spectra according to Karmann, Davenport, Harris, EC 1, Fichtl/McVehil, Simiu/Scanlan	Indian Standard 1893, Chinesische GBJ 11.89, SNIP, AASHTO, BS5400	o	buffetting available, no flutter or galopping

19.10.2017 / 26

Г

Technical details - ILM

Bridges erected by ILM - SOFiSTiK

- Beams, shells, brics, springs can be launched
- No specific pre-processor required, no separate module, fully compatible with all other definitions / analysis needs.
- Moving deck or complete sub-structure, from any side
- No restriction regarding PT, element numbers etc.
- Biggest moment at supports available (ex. 10mm before contact at support)
- Longitudinal and transvere PT, intern and extern
- Super- and Substructure

Bridges erected by ILM - RMBridge

- Beams, springs can be launched
- Launching of partial models not possible.
- Specific pre-processor dividing the model into launching step – elements. Two models to deal with.
- Moving deck only, no sub-structure model possible
- PT related to element/node numbers problems when handling two models.
- Biggest moment at supports not available.
- Longitudinal PT, intern and extern
 - Only Superstructure

19.10.2017 / 27

Г

L

Bridges erected by ILM – SOFISTIK: DORSTFONTEIN ILM/CABLE STAY RIVER BRIDGE, SOUTH AFRICA

- Beams, shells, cables, springs launched, cables as temporarily supports
- Steel girder as beams, deck as 3D shell with variable thickness

Г

19.10.2017 / 28

Г

Bridges erected by ILM – SOFISTIK: DORSTFONTEIN ILM/CABLE STAY RIVER BRIDGE, SOUTH AFRICA

Г

L

Bridges erected by ILM – SOFISTIK: DORSTFONTEIN ILM/CABLE STAY RIVER BRIDGE, SOUTH AFRICA

19.10.2017 / 30

Г

L

Bridges erected by ILM – SOFiSTiK: OKAVANGO ILM RIVER BRIDGES, BOTSWANA

- Beams, shells, springs launched, launching nose as 3D Shells for detailed design and local buckling issues
- PT deck with internal and external PT
- Full substructure design, all SLS and ULS envelopes, soil-structure interaction, pile design

Г

L

Bridges erected by ILM – SOFISTIK: OKAVANGO ILM RIVER BRIDGES, BOTSWANA

• Beams, shells, springs launched, launching nose as 3D Shells for detailed design and local buckling issues

19.10.2017 / 32

Г

L

Bridges erected by ILM – SOFiSTiK: Trunkenthalbridge, Germany

• 300 stages for arch construction, 400 stages for ILM erection.

19.10.2017 / 33

Г

Bridges erected by ILM – SOFiSTiK: Trunkenthalbridge, Germany

19.10.2017 / 34

Г

Г

Bridges erected by ILM – SOFiSTiK: Haspenbachbridge, Germany

 Launching from both sides, connecting two decks with each other.

19.10.2017 / 36

Г

L

Г

Bridges erected by ILM – SOFiSTiK: Panama bridge, VINCI data

• Detailed modelling of casting mould incl sub structure, sliding of deck incl friction.

19.10.2017 / 37

Г

Bridges erected by ILM - SOFiSTiK: new parking over the railway station in Rome

- Beams, shells, springs launched, full steel design, full foundation design
- Precamber and fabrication shapes

Г

19.10.2017 / 38

Г

19.10.2017 / 42

I SOFISTIK

Thank you

19.10.2017 / 44

Г

L

